logo
 

Тетрадкин Град

Программа по математике для начальных классов ориентирует на обязательное овладение всеми учащимися различными способами проверки решения задач. Работа по формированию навыков контроля и самоконтроля при решении задач очень важна. Ведь проверка решенной задачи позволяет не только убедиться в правильности решения, но и способствует более глубокому пониманию и осмыслению ее математического содержания, осознанию связей между величинами, представленными в задаче. Однако, как правило, при проверке решения задачи активное участие принимают лишь некоторые ученики, ведущие объяснение. Остальные же занимают позицию пассивных слушателей, или исполнителей, даже если задача была решена ими неправильно.

Обучение проверке решения задач представляет собой полноценный этап в обучении детей решению задач. Оно должно быть специально организовано, проводиться целенаправленно и систематически. Причем на первых этапах обучения решению задач, когда у детей еще не достаточно сформированы навыки контроля и самоконтроля, имеет смысл предлагать учащимся после решения задачи проверить, правильно ли она решена.

Приведем примеры заданий, которые необходимо предлагать учащимся для того, чтобы выработать у них внутреннюю потребность проверять решение задач:

1. При решении задачи обязательно объясните себе, почему решаете так, а не иначе.

2. После решения задачи прочитайте снова текст задачи и проверьте, все ли требования задачи выполнены, правильно ли.

3. Составьте план решения задачи. Какой пункт в решении задачи будет последним? (Работа над задачей заканчивается проверкой ее решения).

Учителю необходимо побуждать учащихся проверять выполнение любого упражнения, задачи в том числе.

Существуют следующие способы проверки решения задачи:

1. анализ ответа и прикидка ответа;

2. решение задачи другим способом;

3. подстановка результата в условие (установление соответствия между числами из условия и результатом);

4. составление и решение обратных задач;

5. сверка результата с ответом, данным в конце учебника (в начальной школе – сообщенным учителем).

Некоторые методисты относят графический способ решения задачи к отдельному способу проверки. На наш взгляд, этот способ относится к решению задачи другим способом.

Ожидаемый ответ задачи должен быть проанализирован, например, при ответе на вопрос «Сколько квартир на этаже?» явно не должно быть числа (–159) или 5,7 квартиры.

Прикидка обычно проводится перед решением задачи, устанавливаются границы значений искомого числа. После получения ответа проверяют, удовлетворяет ли он выбранным границам. В случае несоответствия делают вывод о неправильности результата.

Применять этот способ можно как для простых, так и для составных задач. Данный способ является необходимой частью анализа задач в косвенной форме, в связи с тем, что еще до решения задачи нужно выяснить, какое число получится в ответе – больше или меньше данного. Проиллюстрируем применение этого способа проверки конкретными примерами.

1) «Торт стоит 20 руб., а коробка конфет 8 руб. На сколько рублей коробка конфет дешевле торта?».

Прочитайте задачу. Что в задаче известно? (Цена торта 20 руб., цена коробки конфет 8 руб.). Значит, в ответе задачи должно получиться число, меньшее 20 на 8. Выполняя решение задачи, дети получат

20 – 8 = 12 (руб.), что подтверждает правильность предыдущих рассуждений.

2) «Сыну 8 лет, что на 25 лет меньше, чем отцу. Сколько лет отцу?».

Прочитайте задачу. Подумайте, какое число должно получиться в результате? Больше или меньше, чем 8? (Больше, так как отец старше сына). На сколько больше? (На 25).

3) «В одном бидоне осталось 4 литра молока, а во втором – 6 литров. Сколько литров молока осталось в двух бидонах?»

Данная задача относится к разряду задач, трудных для восприятия детьми, поскольку они привыкли, что слово «осталось» связано с действием вычитания. Для предупреждения ошибки в решении необходимо использовать прикидку. Дети должны прийти к выводу, что в результате должно получиться число, большее, чем каждое из чисел условия.

4) «В одном ящике 5 кг помидоров, а в другом 8 кг таких же помидоров. Сколько нужно заплатить за каждый ящик, если вся покупка стоит 26 руб.?»

Какова стоимость каждого ящика? Больше или меньше стоимости всей покупки? (В результате должно получиться два числа, меньших, чем 26). Какой ящик стоит дороже? (Второй). Почему? (Так как в нем больше помидоров). После выполнения решения задачи, получаем, что первый ящик стоит 10 руб., а второй – 16 руб. (10<16).

Однако стоит отметить, что данный способ проверки целесообразно применять не для всех задач.

Решение задачи другим способом можно применять лишь в том случае, если таковой существует. При совпадении результатов в обоих способах решения делается вывод о его правильности.

Например:

Из двух сёл, расстояние между которыми 69 км, навстречу друг другу выехали два велосипедиста. Через какое время они встретятся, если скорость одного 11 км/ч, а другого – 12км/ч.

Решение:

1 способ:

1) Какова скорость сближения?

11 км/ч + 12 км/ч = 23 км/ч

2) Через сколько часов они встретятся?

69 км : 23 км/ч = 3 ч.

Ответ: велосипедисты встретятся через 3 часа.

2 способ:

Пусть х часов – время движения до встречи. Тогда один из велосипедистов до встречи проехал 11х (км), а второй – 12х (км). Учитывая общее расстояние, пройденное ими, составим уравнение:

11х + 12х = 69

23х = 69

х = 3 (ч).

Ответ: велосипедисты встретятся через 3 часа.

Вывод: при различных способах решения получены одинаковые ответы, следовательно, задача решена верно.

Проверим решение этой задачи подстановкой. Действительно, если оба велосипедиста находились в пути до встречи 3 часа, то:

11·3 = 33 (км) – прошел первый до встречи;

12·3 = 36 (км) – прошел второй;

33+36 = 69 (км) они прошли вместе.

Вывод: задача решена верно.

 

Составление и решение обратных задач – один из интереснейших способов проверки задачи. Традиционная методика рекомендует вводить его лишь во втором классе, однако, работая в системе укрупнения дидактических единиц, составлять и решать обратные задачи начинают в первом классе при изучении обратных действий сложения и вычитания. При этом дети наиболее полно понимают связи между величинами и наблюдают обратные по отношению друг к другу действия. Часто обратная задача бывает сложнее прямой. Работа над обратными задачами не будет сложной, если начать её как можно раньше. Дети всегда с удовольствием составляют и решают задачи, обратные данной.

Обратной задачей к данной является та, которая содержит искомое число в качестве известного, а какое-либо из известных чисел прямой задачи становится неизвестным.

Например, эти задачи являются обратными:

1. Из двух сёл, расстояние между которыми 69 км навстречу друг другу выехали два велосипедиста. Через какое время они встретятся, если скорость одного 11 км/ч, а другого – 12км/ч.

2. Из двух сел навстречу друг другу выехали одновременно два велосипедиста и встретились через 3 часа. Каково расстояние между селами, если их скорости 11 км/ч и 12 км/ч соответственно.

К данной задаче можно составить ещё 2 обратные задачи, где искомыми будут являться скорости велосипедистов. Составьте их и решите все задачи.

Рассмотрим традиционную методику работы над обратными задачами. Многие методисты отмечают проявление некоторого формального отношения к использованию этого приема работы.

В учебнике математики для 2 класса предложено несколько заданий, требующих составления обратных задач. Этот вид упражнений является полезным и эффективным средством при овладении учащимися умением решать арифметические задачи. В процессе этой работы учащиеся осмысливают и углубляют знания связей между различными величинами, например: «цена – количество – стоимость» или «расход чего-либо на единицу – количество единиц – общий расход» и другими.

Составление обратных задач также рассматривается методистами как один из видов творческих упражнений, направленных на преобразование одной задачи в другую, на сравнение их условия, решении, ответов. Однако, М.В. Богданович отмечает, что «составление обратной задачи как способ проверки можно использовать для любой задачи, но он громоздкий и его следует применять, преследуя одновременно и другие цели работы над задачей».

К сожалению, составление обратных задач учителя не всегда связывают с проверкой решения задач. Причина может быть не только в громоздкости, но и в невладении методикой данной работы. Это не позволяет учителю полностью использовать возможности обратных задач, либо ведет лишь к формальному выполнению проверки.

Для выполнения проверки решения прямой задачи способом составлением обратной задачи и ее решения, дети должны овладеть следующим алгоритмом:

1. решить исходную задачу;

2. подставить результат в текст исходной задачи в качестве известного данного;

3. обозначить новое неизвестное в задаче;

4. составить новую задачу по отношению к данной;

5. решить составленную задачу;

6. сравнить полученный результат с тем данным, которое сделали неизвестным;

7. сделать соответствующий вывод (если числовые значения совпадут, то задача решена верно).

Осознанное выполнение полного состава действий данного алгоритма является обязательным дидактическим условием. Проверка считается выполненной, если сделаны выводы на основе сравнения числа, полученного при решении обратной задачи с данным числом прямой задачи. Выполнение этого действия позволяет сделать вывод о правильности или неправильности решения задачи.

Рассмотрим фрагмент урока во втором классе по теме «Знакомство с обратными задачами».

К учебным целям урока относятся:

а) познакомить детей с понятиями «прямая задача», «обратная задача»;

б) раскрыть прием составления задачи, обратной данной;

в) показать, что составление обратной данной задачи и ее решение можно рассматривать как один из способов проверки решения задачи;

г) познакомить детей с алгоритмом проверки прямой задачи путем составления и решения обратной.

Ход урока:

Дети самостоятельно решают задачу: «Коробка конфет и торт вместе стоят 19 руб. Конфеты стоят 8 руб. Сколько стоит торт?»

Дети решают задачу, записывают решение

19 – 8 = 11 (руб.).

Далее работу можно организовать так: О чем решали задачу? (О конфетах и торте). На доске появляется иллюстрация задачи.

Что было известно в задаче? (За всю покупку уплатили 19 руб., а за конфеты 8 руб.). Что узнавали в задаче? (Сколько стоит торт. Он стоит 11 руб.). Все числовые значения учитель подписывает под рисунками на иллюстрации задачи. Как узнали цену торта? (От 19 руб. отняли 8 руб.). Почему выбрали действие вычитания? (19 руб. стоят торт и конфеты, следовательно, торт стоит меньше 19 руб. на 8 руб.).

Далее учитель закрывает запись общей стоимости покупки знаком вопроса, знак вопроса – записью цены торта. Что теперь известно в задаче? (Купили торт за 11 руб. и коробку конфет за 8 руб.). Что нужно узнать? (Сколько заплатили за всю покупку). Мы получили новую задачу. Сформулируйте условие задачи по этим данным. (Купили торт за 11 руб. и коробку конфет за 8 руб. Сколько стоит вся покупка?).

После анализа нового условия задачи дети ее решают и записывают решение в тетрадь.

11 + 8 = 19 (руб.).

Какой ответ получили? (Вся покупка стоит 19 руб.). Чему была равна стоимость всей покупки в первой задаче? (Тоже 19 руб.). Можем ли мы сказать, что при решении первой задачи цена торта найдена правильно? Почему вы так думаете? (В решении новой задачи получили 19 руб. – это стоимость всей покупки. В первой задаче дано было 19 руб. Значит, цену торта мы нашли правильно, потому, что 11 руб. и 8 руб. – это 19 руб.). Итак, мы проверили решение первой задачи.

Что мы для этого делали? (Составили новую задачу и ее решили). Подумайте, когда мы точно можем сказать, задача решена правильно. (Если мы составим и решим новую задачу и в ответе получим число, которое было дано в первой задаче, значит, первая задача решена правильно).

Запомните: исходная задача, которую мы решали первой называется прямой задачей, а новая задача, которую мы составили для проверки решения прямой задачи, называется обратной задачей. С помощью решения обратной задачи мы проверили решение данной задачи.

Что же мы делали, чтобы составить обратную задачу. (Число, которое было известным в условии задачи, мы сделали неизвестным, а неизвестное — известным).

Подумайте, можно ли еще составить задачу, обратную данной прямой задаче. (Можно, если принять за неизвестное цену коробки конфет).

Составьте вторую обратную задачу, решите ее и докажите, что решение обратной задачи позволяет проверить решение данной задачи.

Далее понятие обратной задачи и способа проверки с ее помощью закрепляется по учебнику.

В результате проделанной работы учащиеся должны усвоить, что для составления обратной задачи необходимо преобразовать предложенную задачу так, чтобы ее искомое стало известным числом, а одно из данных чисел стало искомым. Кроме этого, если при решении обратной задачи в результате получили число, которое было известное прямой задаче, то можно с уверенностью сказать, что предложенная задача была решена правильно.

При составлении обратных задач к задачам, в основе решения которых лежат знания конкретного смысла арифметических действий, учащиеся обычно не допускают ошибок. Однако часто ошибаются в составлении обратных задач к задачам, содержащих отношения «больше» и «меньше», заменяя не полученные числа, а само отношение. Это говорит о том, что у учащегося, который допускает такую ошибку, не сформировалось понятие «обратная задача».

Рассмотрим конкретный пример: учащиеся, составляя обратную задачу к задаче: «В одной коробке 15 карандашей, а в другой на 5 карандашей меньше. Сколько карандашей во второй коробке?», составили такую задачу: «В одной коробке 15 карандашей, а в другой на 5 карандашей больше. Сколько карандашей во второй коробке?». Причина ошибки может быть в том, что ученики, считая, что обратная задача должна решаться действием, обратным прямой, составляют задачу, которая решается действием сложения, которое обратно действию вычитания. Это показывает на формальное усвоение знаний этими учениками. Действительно, составленная учащимися задача решается действием сложения, являющимся обратным к действию вычитания. Однако, эту задачу нельзя рассматривать как обратную к исходной, так как при ее составлении было заменено отношение между данными, а не числовые значения и вопрос.

Для устранения этой типичной ошибки полезно использовать в сравнении краткие записи условий как прямой, так и обратных задач.

Прямая задача

Обратные задачи

I – 15 кар.
II – ?, на 5 кар. меньше

I – 15 кар.
II – 10 кар., на ? меньше

I – ? кар.
II – 10 кар., на 5 меньше

Схематическое изображение задачи позволяет учащимся пронаблюдать, что при составлении обратной задачи изменяются только числовые значения, отношения в задаче остаются неизменными.

С другой стороны, если бы обратная задача составлялась с целью проверки решения предложенной задачи, то учащиеся могли бы сами обнаружить свою ошибку. Ведь они при решении обратной задачи получили число, которое не соответствует ни одному из числовых значений прямой задачи.

Часто случается так: ученик решает задачу, а затем проверяет ее решение действием, обратным к выполненному, не составляя текст обратной задачи. Такая «проверка» не всегда позволяет убедиться в правильности решения прямой задачи, а проверяется лишь правильность вычисления, а не правильность выбора арифметического действия. Часто дети, у которых еще не сформирован конкретный смысл арифметических действий, вне зависимости от контекста задачи, решают задачи, в которых содержатся слова «улетели», «вышли в море», «съели», «уехали» и т.д. действием вычитания, хотя в задаче может спрашиваться сколько всего выехало, улетело, ушло и т.д. Рассмотрим конкретную задачу. «В море вышли 5 сейнеров и 4 катера. Сколько кораблей вышло в море?» Ученик, ориентируясь на слово «вышли» ассоциирующееся с процессом уменьшения, выбирает действие вычитания: 5–4=1. Составленное обратное действие (4+1) не позволяет ему выявить ошибочность выбора арифметического действия, так как работа идет в отрыве от математического содержания задачи. Ученик при решении получает в ответе числе 5 и успокаивается, хотя проверил лишь вычисление. А ведь в предложенной задаче необходимо было найти сумму двух слагаемых (все корабли – это сейнеры, их 5, и катера, их 4). Если бы ученик при проверке решения задачи составил условие обратной задачи, а не ограничился только составлением обратного действия, он получил бы следующее: «В море вышел 1 корабль. Из них 4 катера и несколько сейнеров. Сколько сейнеров вышло в море?» Полученное условие задачи противоречиво, поэтому можно было бы сделать вывод об ошибке в решении.

Чаще всего причина такого роди ошибок в том, что у учащегося не сформирован алгоритм проверки решения задачи. Раскрытие алгоритма проверки решения арифметических задач должно стать предметом специального рассмотрения, когда раскрывается содержание каждого действия, входящего в процесс проверки, обосновывается последовательность их выполнения, что приводит к пониманию и осознанию самого приема работы.

Как же можно организовать работу над обратными задачами с первого класса? Рассмотрим методику, предложенную П.М. Эрдниевым. В методике УДЕ применяются укрупненные задания, которые, как правило, состоят из выполнения трех последовательных пунктов:


При таком подходе к работе над обратными задачами (и в качестве способа проверки решения и в качестве творческой работы над задачей) учащиеся при составлении обратных задач не допускают ошибок, описанных ранее.

Рассмотрим конкретные примеры.

Дети рассматривают картинку, на которой мальчик с 5 марками в альбоме и девочка с 2 марками.

Учитель предлагает составить задачу по картинке.

«У мальчика было 5 марок, а у девочки 2 марки. Сколько марок у детей вместе?»

Учитель делит доску на три части вертикальными линиями (в задаче три числа, значит, кроме прямой задачи можно будет составить еще две обратных задачи). Дети делают то же самое в тетради. Квадратик неизвестного числа можно рисовать и ручкой и карандашом, после решения полученный результат заносить в этот квадратик. В верхней строке таблицы записывается так называемая «схема задачи» (термин П.М. Эрдниева), т.е. сначала по порядку записываются числа, которые даны в задаче, а затем ставится «окошечко» для записи неизвестного числа.


В первую колонку заносится решение первой задачи.

Учитель говорит, что решена прямая задача, но к данной прямой задаче можно составить две обратных. В первой задаче предлагается сделать неизвестным число 5. Запись приобретает вид:


Учитель предлагает составить задачу по данной схеме.

«У мальчика и девочки всего было 7 марок. Из них 2 марки было у девочки. Сколько марок было у мальчика?»

Учитель спрашивает, как решить задачу. Дети говорят, что от 7 марок отнять 2 марки останется 5 марок. Запись будет такая:


Аналогичная работа проводится по составлению и решению второй обратной задачи.

«У мальчика и девочки всего было 7 марок. Сколько марок было у девочки, если у мальчика было 5 марок?»


Окончательная запись в тетради учащегося будет такая:


Дети записывают решения трех взаимообратных задач в трех колонках, вверху схема задачи, внизу – решение задачи.

И при введении задач обратных задач по методике УДЕ и по традиционной методике обратите внимание на трудности, которые возникают у учащихся при составлении текста обратных задач. Дети часто пытаются составить обратную задачу по аналогии с прямой задачей. Например: «Дети собирали марки. У мальчика было неизвестно сколько марок, а у девочки 2. А вместе марок у детей 7». Полученная формулировка, конечно, может быть использована. Однако детям стоит показывать различные образцы формулировок задач, убеждать в том, что текст задачи должен быть сформулирован таким образом, чтобы она была понятна всем, кто ее будет решать, чтобы задача была «красивой», «благозвучной», при этом четкой и без лишней информации (первая фраза в задаче «Дети собирали марки»).

Составление и решение обратных задач не только является интересным способом проверки решения задачи, но и творческой работой над задачей. Кроме того, решение обратных задач является одним из приемов насыщения урока задачами.

Если вам удобно работать над задачей с учащимися по другой краткой записи (дети привыкли использовать именно такую форму или другие причины):

Мальчик – 5 м.

Девочка – 2 м.

Всего – 7 м.,

то схему для работы по составлению обратных задач можно, на наш взгляд, записывать после решения прямой задачи, при этом, не заполняя вторую строчку предложенной таблицы. Запись задачи может выглядеть так:

Задача.


Решение:

1) 5 + 2 = 7 (м.)

Ответ: у детей 7 марок.


Если же в своей работе вы используете мобильные схемы, похожие на схемы С.Н. Лысенковой, то можно просто менять числа и знаки вопроса в соответствующих кармашках на демонстрационной схеме и на индивидуальных схемах у детей.

Прямая задача:


I обратная


II обратная


Упражнения

1. Какие способы решения использовались для решения данной задачи о шишках и желудях? Предложите еще несколько способов решения данной задачи. Какой способ, на ваш взгляд, более понятен детям начальных классов? Какой предпочли бы Вы? Почему?

2. Дана задача: «8 одинаковых мячей стоят 48 руб. Сколько стоят 12 таких мячей?» Решите задачу любым способом. Запишите решение задачи всеми возможными способами.

3. Дана задача: «На ткацкой фабрике за 10 дней выпущено 80000 м ткани, причем каждый день выпускали одинаковое количество ткани. Сколько ткани будет выпущено за 100 дней при той же дневной норме?» Решите задачу любым способом. Покажите возможные варианты проверки решения задачи:

4. Составьте к данной задаче все возможные обратные: «В 5 одинаковых клетках помещается 15 кроликов. Сколько нужно таких клеток, чтобы поместить в них 42 кролика?»

5. Дана задача: «Из города к зимовке, расстояние между которыми 150 км, выехали аэросани со скоростью 60 км/ч. В то же время навстречу им из зимовки вышел лыжник и встретил аэросани через 2 часа. Найди скорость лыжника».

Перед решением этой задачи дети решали устные упражнения:

а) Два пешехода вышли одновременно навстречу друг другу и встретились через 2 часа. Сколько времени был в пути первый пешеход?

б) Два пешехода сближаются со скоростью 9 км/ч. Скорость первого пешехода 4 км/ч. Какова скорость второго пешехода?

в) Расстояние 150 км пройдено за 3 часа. Что можно узнать по этим данным?

Установите цель каждого упражнения. Составьте еще 2 упражнения, подготавливающие учащихся к решению этой задачи.

6. Дана задача: «За одно и то же время теплоход прошел 216 км, а моторная лодка 72 км. Чему равна скорость теплохода, если скорость моторной лодки 24 км/ч?» Проанализируйте задачу. Оцените, с какими трудностями может встретиться ребенок при ее решении. Создайте серию подготовительных упражнений к этой задаче. Позаботьтесь при этом, чтобы дети нашли все способы ее решения.

7. Задачу из предыдущего упражнения переделайте в задачу на пропорциональное деление. Смогут ли дети решить такую задачу в начальных классах? Обоснуйте ответ. Предусмотрено ли решение таких задач программой?

8. Дети самостоятельно решили задачу: «За два дня самолет пролетел с одинаковой скоростью 10240 км. В первый день он был в полете 10 ч, во второй – 6 ч. Сколько километров пролетал самолет каждый день?»

После этого учитель предложил детям такие упражнения: «Переделать эту задачу в задачу на нахождение четвертого пропорционального и сформулировать ее текст. Переделать в задачу на нахождение неизвестного по двум разностям и сформулировать ее текст. Изменить задачу так, чтобы ее решение сохранилось, но вместо величин скорость, время и расстояние в ней была другая тройка величин». Как вы думаете, каковы цели подобной работы? Какие у нее достоинства и недостатки? Подберите к этой задаче еще два упражнения с той же целью.

9. Предложите не менее трех различных способов проверки правильности решения задачи, данной в предыдущем упражнении, которыми могут воспользоваться дети. Нужно ли учить детей проверять задачи? Почему?

10. Учащимся на дом была задана задача: «Для школы купили 10 портретов по 3 руб. и 2 портрета по 5 руб. Сколько денег уплатили за все портреты?» Предложите косвенный способ проверки домашней задачи, приводящий детей к правилу умножения суммы на число. В чем преимущества такого способа проверки домашнего задания?

11. Дана задача: «В магазин привезли игрушки в пакетах: 90 кубиков по 10 штук в пакете и 60 кеглей по 6 штук в пакете. Сколько всего пакетов с игрушками привезли в магазин?» Детям дано упражнение на полное обращение этой задачи (составить и решить все обратные задачи). Выполните это упражнение, применив оптимальный вариант его записи.

 

Частные мастера Частные Мастера-Плиточники

Ванная под ключ - https://plitochniki.com.ua

Правильное создание сайтов в Киеве https://atempl.com/r/

Поиск

 

Школярик

 

Блок "Поделиться"

 

 

Яндекс.Метрика Top.Mail.Ru

Copyright © 2023 High School Rights Reserved.