ОБРАЗОВАТЕЛЬНЫЙ ПОРТАЛ ДЛЯ ПЕДАГОГОВ, УЧЕНИКОВ, СТУДЕНТОВ
З   А            П   А   Р   Т   О   Й
Быть      умным      модно!
Главная Мой профиль Выход                      Вы вошли как Гость | Группа "Гости" | RSS
Среда, 18.07.2018, 13:27
ИГРЫ НА ПЕРЕМЕНЕ   ДЕТИ И ЗАКОН   ШКОЛЬНЫЙ ТЕАТР   РЕБУСЫ  ШКОЛЬНЫЙ ФОЛЬКЛОР
» ШКОЛЬНАЯ ЖИЗНЬ
» ПЛАНЫ-КОНСПЕКТЫ
   УРОКОВ

РУССКИЙ ЯЗЫК

ЛИТЕРАТУРА

ИНОСТРАННЫЙ ЯЗЫК

ИСТОРИЯ

МАТЕМАТИКА

БИОЛОГИЯ

ГЕОГРАФИЯ

ХИМИЯ

ФИЗИКА

ИНФОРМАТИКА

ОБЩЕСТВОЗНАНИЕ

ЕСТЕСТВОЗНАНИЕ

ОБЖ

ТЕХНОЛОГИЯ

ФИЗКУЛЬТУРА

МХК

МУЗЫКА

ИЗО

ВНЕКЛАССНАЯ РАБОТА

» НАЧАЛЬНАЯ ШКОЛА
» РУССКИЙ ЯЗЫК

РУССКИЙ ЯЗЫК: КРАТКИЙ
   ТЕОРЕТИЧЕСКИЙ КУРС
   ДЛЯ ШКОЛЬНИКОВ


РУССКИЙ ЯЗЫК И КУЛЬТУРА
   РЕЧИ


ДИКТАНТЫ ПО РУССКОМУ
   ЯЗЫКУ


ИЗЛОЖЕНИЯ ПО РУССКОМУ
   ЯЗЫКУ


ТЕСТЫ ПО РУССКОМУ
   ЯЗЫКУ. 5 КЛАСС


ТЕСТЫ ПО РУССКОМУ
   ЯЗЫКУ. 6 КЛАСС


РАБОЧИЕ МАТЕРИАЛЫ К
   УРОКАМ РУССКОГО ЯЗЫКА.
   7 КЛАСС


ТЕКСТЫ, РАЗВИВАЮЩИЕ
   ЛОГИКУ И МЫШЛЕНИЕ


ТЕКСТЫ ДЛЯ КОМПЛЕКСНОГО
   АНАЛИЗА В 9 КЛАССЕ


ПОДГОТОВКА К ГИА В
   9 КЛАССЕ


ЗАДАНИЯ ПО ТЕМАМ
   "ЛЕКСИКА","ФРАЗЕОЛОГИЯ"
   И "СЛОВООБРАЗОВАНИЕ"


ЗАДАНИЯ ДЛЯ ОБОБЩЕНИЯ И
   СИСТЕМАТИЗАЦИИ ЗНАНИЙ.
   11 КЛАСС


ИГРОВЫЕ ТЕХНОЛОГИИ НА
   УРОКАХ РУССКОГО ЯЗЫКА


ВЫПУСКНОЕ СОЧИНЕНИЕ

» ЛИТЕРАТУРА

САМЫЕ ЗНАМЕНИТЫЕ
   РУССКИЕ ПОЭТЫ


РУССКАЯ ЛИТЕРАТУРА
   ХII-ХХ ВЕКОВ


ТЕСТОВЫЕ ЗАДАНИЯ ПО
   ЛИТЕРАТУРЕ


ДОКЛАДЫ ПО ЛИТЕРАТУРЕ
   7 КЛАСС


ДОКЛАДЫ ПО ЛИТЕРАТУРЕ
   9 КЛАСС


ВИДЕОУРОКИ "ЛИТЕРАТУРНОЕ
   ПРОИЗВЕДЕНИЕ ЗА
   3 МИНУТЫ"

» ИНОСТРАННЫЕ ЯЗЫКИ
» ИСТОРИЯ
» БИОЛОГИЯ
» ГЕОГРАФИЯ
» МАТЕМАТИКА
» ФИЗИКА

ФИЗИКА И ЕЕ ЗАКОНЫ

ЭНЦИКЛОПЕДИЯ ШКОЛЬНИКА
   "ФИЗИКА"


КТО ИЗОБРЕЛ СОВРЕМЕННУЮ
   ФИЗИКУ


НАГЛЯДНАЯ ФИЗИКА В
   ВОПРОСАХ И ОТВЕТАХ


ФИЗИКА ДЛЯ ВСЕХ

ВЕСЕЛАЯ МЕХАНИКА

ФИЗИКА ПОЛНАЯ ЧУДЕС

ЗАНИМАТЕЛЬНАЯ ТЕОРИЯ
   ОТНОСИТЕЛЬНОСТИ


ИСТОРИЯ ЭЛЕКТРИЧЕСТВА

АВИАЦИЯ И
   ВОЗДУХОПЛАВАНИЕ


ФИЗИКА. ТЕОРИЯ И ПРИМЕРЫ
   РЕШЕНИЯ ЗАДАЧ


ЗАДАЧИ ПО ФИЗИКЕ.
   10-11 КЛАССЫ


КОНТРОЛЬНЫЕ РАБОТЫ ПО
   ФИЗИКЕ. 9 КЛАСС


КОНТРОЛЬНЫЕ РАБОТЫ ПО
   ФИЗИКЕ. 11 КЛАСС


ФИЗИКА В РИСУНКАХ

ФИЗИЧЕСКИЕ ЗАДАЧИ
   ШЕРЛОКА ХОЛМСАХ


НЕНАГЛЯДНЫЙ ЗАДАЧНИК ПО
   ФИЗИКЕ


ФИЗИКА И МУЗЫКА

» Категории раздела
ДИДАКТИЧЕСКИЙ МАТЕРИАЛ К УРОКАМ МАТЕМАТИКИ В 1 КЛАССЕ [109]
МЕТОДИКА РАБОТЫ НАД ТЕКСТОВЫМИ ЗАДАЧАМИ В НАЧАЛЬНЫХ КЛАССАХ [25]
ТАБЛИЦА УМНОЖЕНИЯ В СТИХАХ [9]
» Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
» Форма входа

Главная » Статьи » УРОКИ МАТЕМАТИКИ В НАЧАЛЬНОЙ ШКОЛЕ » МЕТОДИКА РАБОТЫ НАД ТЕКСТОВЫМИ ЗАДАЧАМИ В НАЧАЛЬНЫХ КЛАССАХ

Задачи с недостающими или избыточными данными, нереальные задачи

Введем понятие задач с достаточным количеством данных, с недостающими данными и избыточными данными (по Н.В. Метельскому).

Если между условием задачи (А) и ее требованием (Х) установлено соотношение, определяющее одно или несколько определенных решений, то задачу считают определенной. Этот тип задачи можно условно изобразить формулой импликации: AÞX, которую будем понимать так: условие А содержит достаточно и только достаточно данных для выполнения требования Х.

Если из условия А опустить какое-либо данное ak, то получим задачу неопределенную (с недостающими денными), которая имеет бесконечное множество решений, зависящих от бесконечного множества значений той величины (параметра), которой принадлежало значение ak.

В случае, если условие, кроме А содержит еще некоторые данные an+1, то задачу называют переопределенной (с избыточными данными). Переопределенные задачи могут иметь решения в случае, если лишние данные не противоречат друг другу.

Нереальными задачами будем называть задачи, числовые данные которых делают их лишенными смысла (по В.А. Крутецкому). Каждая из этих задач является типовой, но числовые данные делают ее нереальной. Например:

1.      Периметр прямоугольника 8 см, а сумма двух его сторон 6 см. Найти длину стороны.

2.      Иван на два года моложе Петра, Петр четырьмя годами старше Степана, Андрей на три года старше, чем Петр, Иван равен по возрасту Степану. Кто старше – Андрей или Иван?

Применение при обучении решению задач с недостающими и избыточными данными, нереальных задач имеет большое значение. При помощи этих задач можно не только выяснить насколько дети понимают связи в задаче, но и при работе над одной задачей с избыточными данными иногда удается составить и решить еще несколько задач, что является одним из приемов насыщения уроков задачами.

Например:

1.    Маша отдала несколько открыток подруге, после чего у нее осталось 5 открыток. Сколько открыток отдала Маша подруге?

После выяснения, какого данного не хватает для возможности решения задачи, ученикам можно предложить самостоятельно подобрать, сколько открыток было у Маши, и решить при этом несколько задач вместо одной.

2.     К чаю подали 9 пирожных «эклер», 6 пирожных «корзиночек» и 12 шоколадных конфет. Съели 11 пирожных. Сколько пирожных осталось?

Следует выяснить, какие данные лишние, как изменить вопрос или что изменить в условии, чтобы использовать все данные. Опять решается не одна, а несколько задач.

Задачи с избыточными данными могут быть противоречивыми и непротиворечивыми. На наш взгляд, детям обязательно нужно показывать такие задачи.

Рассмотрим работу над задачами такого вида на конкретных примерах. Даны задачи: а) «Дети сорвали 24 яблока. 8 яблок они съели, а остальные поделили поровну. Сколько яблок получил каждый ребенок?»; б) «Таня и Сережа сорвали 18 яблок. Таня сорвала 6 яблок, а Сережа в 2 раза больше. Сколько яблок сорвал Сережа?»; в) «Таня и Сережа сорвали 18 яблок. Таня сорвала 6 яблок, а Сережа в 3 раза больше. Сколько яблок сорвал Сережа?». Составим схемы разбора каждой из предложенных задач.

Задача а)

Задача (а) является задачей с недостающими данными. Она напоминает деформированную задачу, однако, в отличие от деформированной задачи, не имеет «окошка», т.е. конкретного указания на то, что пропущено данное. Эту задачу можно использовать для составления каскада задач.

Задачи (б) и (в) являются задачами с избыточными (лишними) данными. Однако одна из них может быть решена и непротиворечива, а другая не имеет однозначного решения, данные в ней противоречат друг другу.


Задача в)

Эта задача, решенная с использованием каждой пары данных, дает разные ответы, которые противоречат друг другу: Сережа сорвал 12 яблок, и Сережа сорвал 18 яблок. Таким образом, задача не имеет однозначного решения.

Однако, иногда случается так, что дети принимают полную задачу за задачу либо с лишними, либо недостающими данными.

Например:

1.        Турист 3 ч шел пешком со скоростью 5 км/ч, потом 4 ч ехал на поезде, скорость которого в 12 раз больше, а оставшийся путь он проехал на автобусе за 8 ч. С какой средней скоростью двигался турист, если скорость автобуса равна 3/4 скорости поезда?

В этой задаче нужно найти скорости движения туриста на каждом из этапов пути, найти все расстояние, пройденное туристом, и разделить это расстояние на общее время в пути.

Однако, дети, видя скорость движения на каждом этапе, часто хотят найти не среднюю скорость за все время движения, а среднюю скорость на трех этапах, ища среднее арифметическое трех скоростей, т.е., по представлению детей данная задача является как бы задачей с избыточными (лишними) данными.

2.        Через один кран бассейн заполняется за 15 часов, а через другой – за 10 часов. За сколько часов заполнится бассейн, если краны будут работать вместе?

При решении этой задачи нужно обозначить объем бассейна за 1, потом найти производительность 1-го крана и 2-го крана, потом результаты сложить. Но учащиеся начальной школы, не знакомые с обыкновенными дробями, посчитают эту задачу как задачу с недостающими данными.

Включение задач с лишними и недостающими данными в курс математики в начальных классах является и одной из составляющих формирования навыков контроля и самоконтроля младших школьников, на основе которых у учащихся в дальнейшем формируются критерии, позволяющие учащимся самостоятельно находить ошибки в решениях заданий (не только текстовых задач). К ним можно отнести следующие критерии:

§   соотношение результата с действительностью;

§   соотнесение полученного результата с данными задачи и сравнение с первоначально ожидаемым результатом;

§   проведение операций в обратном порядке;

§   исследование ответа в предельных ситуациях (что будет, если….);

§   решение задания другим способом и сверка результатов;

§   проверка хода решения с обращением внимания на следующее: а) все ли данные использованы; б) достаточно ли данных для решения; в) не нарушена ли логика решения; г) не используются ли в решении те сведения, которые не вытекают непосредственно из условия задачи; д) прослеживается ли логика решения.

Также можно предложить детям задачи с вопросом, в котором спрашивается то, что уже известно в задаче. Например: «На грядку высадили 15 кустов смородины и 5 кустов крыжовника. Сколько кустов крыжовника высадили?» Применение задач такого рода также позволяет ученикам глубже осмыслить понятие задачи, ее структуры.

Упражнения

1.        Найдите в действующих учебниках математики задачи с недостающими данными. Как вы думаете, почему они расположены именно в разделе «Занимательные задачи»?

2.        Дана задача: «Пальто, костюм и ботинки стоят 100 грн. Пальто стоит 50 грн., костюм 38 грн. Сколько стоят ботинки?» Сделайте схему разбора этой задачи. Переделайте эту задачу в задачу с недостающими данными; в задачу с лишними данными; в противоречивую задачу. Как все это отражается на схеме разбора задачи? В чем ценность таких задач? Какая из переделанных задач способна дать серию задач при работе с ней?


Овчинникова М.В. Методика работы над текстовыми задачами в начальных классах. Киев, 2001. 128 с

Категория: МЕТОДИКА РАБОТЫ НАД ТЕКСТОВЫМИ ЗАДАЧАМИ В НАЧАЛЬНЫХ КЛАССАХ | Добавил: admin (16.01.2013)
Просмотров: 4577 | Теги: учителю начальных классов, методика преподавания математики в, уроки математики в начальной школе | Рейтинг: 5.0/1
» ХИМИЯ

ОТКРЫТИЕ ХИМИЧЕСКИХ
   ЭЛЕМЕНТОВ


ГАЛЕРЕЯ ХИМИЧЕСКИХ
   ЭЛЕМЕНТОВ


РАССКАЗЫ О МЕТАЛЛАХ

ПОЛЕЗНАЯ ХИМИЯ: ТЕОРИЯ И
   ПРАКТИКА


ЗАКОН МЕНДЕЛЕЕВА

ИЛЛЮСТРАТИВНЫЙ
   МАТЕРИАЛ К СЕМИНАРАМ ПО
   НЕОРГАНИЧЕСКОЙ ХИМИИ


ХИМИЯ. ЕГЭ



» АСТРОНОМИЯ

ПУТЕВОДИТЕЛЬ ПО
   АСТРОНОМИИ


ПРОИСХОЖДЕНИЕ НЕБЕСНЫХ
   ТЕЛ


ШКОЛЬНИКАМ О КОСМОСЕ

ЗАНИМАТЕЛЬНЫЕ ВОПРОСЫ
    ПО АСТРОНОМИИ И НЕ
    ТОЛЬКО


ДЕНЬ И НОЧЬ.ВРЕМЕНА ГОДА

ЗАГАДКИ АСТРОНОМИИ

» В ГОСТЯХ У РЕШАЛКИНА
» ОПЫТЫ ПРОБИРКИНА

ХИМИЯ

ФИЗИКА

АСТРОНОМИЯ

БИОЛОГИЯ

НАУКИ О ЗЕМЛЕ

ПОГОДА

» ВСЕЗНАЙКИН ПОДСКАЖЕТ
» ОБЩЕСТВОЗНАНИЕ И
    ПРАВО

ЭНЦИКЛОПЕДИЯ ШКОЛЬНИКА
   "ГОСУДАРСТВО"


ТРЕНАЖЕР "Я - ГРАЖДАНИН
   РОССИИ". 5 КЛАСС


ОБЩЕСТВОЗНАНИЕ. ГИА.
   9 КЛАСС


ПОДГОТОВКА К ЕГЭ ПО    ОБЩЕСТВОЗНАНИЮ

ПРАВО. 10-11 КЛАСС

» ЮНЫЕ ЖУРНАЛИСТЫ

ВЫПУСКАЕМ ШКОЛЬНУЮ
   ГАЗЕТУ


ИНТЕРАКТИВНЫЕ ИГРЫ
    ДЛЯ ЮНЫХ ЖУРНАЛИСТОВ

» ЭСТЕТИЧЕСКОЕ
    ВОСПИТАНИЕ

ДЕТЯМ О КУЛЬТУРЕ

АНТИЧНЫЕ МИФЫ В    ИСКУССТВЕ

РУССКАЯ НАРОДНАЯ    МИФОЛОГИЯ

КУХНЯ НАРОДОВ МИРА

» ИЗО

РУССКИЕ ЖИВОПИСЦЫ

ЭНЦИКЛОПЕДИЯ
   "ИЗОБРАЗИТЕЛЬНОЕ
   ИСКУССТВО"


КТО ТАКИЕ ХУДОЖНИКИ-
   ПЕРЕДВИЖНИКИ?


ДАВАЙТЕ РИСОВАТЬ

ОСНОВЫ
   ИЗОБРАЗИТЕЛЬНОГО
   ИСКУССТВА


ПРОГУЛКИ ПО
   ТРЕТЬЯКОВСКОЙ ГАЛЕРЕЕ

» УЧИТЕЛЬСКАЯ
» СЕМЬЯ И ШКОЛА

ТРЕНИНГ ВЗАИМОДЕЙСТВИЯ
   ПСИХОЛОГА И ПЕДАГОГА С
   РОДИТЕЛЯМИ


100 ЗАБАВНЫХ ИГР В КРУГУ
   СЕМЬИ

» Поиск










» Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Copyright MyCorp © 2018

    Яндекс.Метрика Рейтинг@Mail.ru Каталог сайтов. Зарегистрировать сайт бесплатно в каталог сайтов Яндекс цитирования Каталог сайтов и статей iLinks.RU  Каталог сайтов Bi0